Whole bone testing in small animals: systematic characterization of the mechanical properties of different rodent bones available for rat fracture models
نویسندگان
چکیده
OBJECTIVES Rat fracture models are extensively used to characterize normal and pathological bone healing. Despite, systematic research on inter- and intra-individual differences of common rat bones examined is surprisingly not available. Thus, we studied the biomechanical behaviour and radiological characteristics of the humerus, the tibia and the femur of the male Wistar rat-all of which are potentially available in the experimental situation-to identify useful or detrimental biomechanical properties of each bone and to facilitate sample size calculations. METHODS 40 paired femura, tibiae and humeri of male Wistar rats (10-38 weeks, weight between 240 and 720 g) were analysed by DXA, pQCT scan and three-point-bending. Bearing and loading bars of the biomechanical setup were adapted percentually to the bone's length. Subgroups of light (skeletal immature) rats under 400 g (N = 11, 22 specimens of each bone) and heavy (mature) rats over 400 g (N = 9, 18 specimens of each bone) were formed and evaluated separately. RESULTS Radiologically, neither significant differences between left and right bones, nor a specific side preference was evident. Mean side differences of the BMC were relatively small (1-3% measured by DXA and 2.5-5% by pQCT). Over all, bone mineral content (BMC) assessed by DXA and pQCT (TOT CNT, CORT CNT) showed high correlations between each other (BMC vs. TOT and CORT CNT: R2 = 0.94-0.99). The load-displacement diagram showed a typical, reproducible curve for each type of bone. Tibiae were the longest bones (mean 41.8 ± 4.12 mm) followed by femurs (mean 38.9 ± 4.12 mm) and humeri (mean 29.88 ± 3.33 mm). Failure loads and stiffness ranged from 175.4 ± 45.23 N / 315.6 ± 63.00 N/mm for the femurs, 124.6 ± 41.13 N / 260.5 ± 59.97 N/mm for the humeri to 117.1 ± 33.94 N / 143.8 ± 36.99 N/mm for the tibiae. Smallest interindividual differences were observed in failure loads of the femurs (CV% 8.6) and tibiae (CV% 10.7) of heavy animals, light animals showed good consistency in failure loads of the humeri (CV% 7.7). Most consistent results of both sides (left vs. right) in failure loads were provided by the femurs of light animals (mean difference 4.0 ± 2.8%); concerning stiffness, humeri of heavy animals were most consistent (mean difference of 6.2 ± 5%). In general, the failure loads showed strong correlations to the BMC (R2 = 0.85-0.88) whereas stiffness correlated only moderate, except for the humerus (BMC vs. stiffness: R2 = 0.79). DISCUSSION Altogether, the rat's femur of mature specimens showed the most accurate and consistent radiological and biomechanical results. In synopsis with the common experimental use enabling comparison among different studies, this bone offers ideal biomechanical conditions for three point bending experiments. This can be explained by the combination of a superior aspect ratio and a round and long, straight morphology, which satisfies the beam criteria more than other bones tested.
منابع مشابه
Cortical Bone Mechanical Properties Are Altered in an Animal Model of Progressive Chronic Kidney Disease
Chronic kidney disease (CKD), which leads tocortical bone loss and increasedporosity,increases therisk of fracture. Animal models have confirmed that these changes compromise whole bone mechanical properties. Estimates from whole bone testing suggest that material properties are negatively affected, though tissue-level assessmentshavenot been conducted. Therefore, the goal of the present study ...
متن کاملEffects of Fatty Acids, Nutrients and Vibration on Bone Mechanical Properties and its Metabolic Parameters in Rat
Purpose: The aim of this survey was to evaluate the effects of fatty acids, nutrients and vibration on bone mechanical properties and its metabolic parametr’s in rat.Materials and Methods: 56 male wistar rats weighting 150±30 were used. Rats divided into control and six experimental groups as below: Vibration, Vibration+nutrients, Vibration+nutrients+ Canola oil, Sunflower oil, Canola oil+Sunfl...
متن کاملRelations between Cancellous Bone Mechanical Properties and Bone Mineral Density in the Proximal Tibia of the Rat
INTRODUCTION: Non-invasive estimation of bone mechanical condition is a critical element in ongoing efforts aimed at reducing fractures in at-risk populations, such as those with osteoporosis, spinal cord injury, metabolic bone disease, or osteopenia due to long-term disuse or weightlessness. Considerable emphasis is placed upon bone mineral density (BMD) in the clinical setting, owing largely ...
متن کاملElastic characterization of porous bone by ultrasonic method through Lamb waves
The object of this research is to characterize the porous bones by an ultrasonic method using Lamb waves. In recent years, the characterization of such materials has attracted many authors and takes a perfect place in the field of medicine. It requires the development of more efficient technology for getting the necessary quality and security. This paper aims to exploits the dispersion curves o...
متن کاملMeasurement of the toughness of bone: a tutorial with special reference to small animal studies.
Quantitative assessment of the strength and toughness of bone has become an integral part of many biological and bioengineering studies on the structural properties of bone and their degradation due to aging, disease and therapeutic treatment. Whereas the biomechanical techniques for characterizing bone strength are well documented, few studies have focused on the theory, methodology, and vario...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 23 شماره
صفحات -
تاریخ انتشار 2018